FAA initiatives to improve general aviation safety
The Federal Aviation Administration (FAA) and industry are working on a number of key initiatives to improve general aviation (GA) safety: the GA Joint Steering Committee (GAJSC), Equip 2020 for ADS-B Out, new Airman Certification Standards (ACS), streamlining aircraft certification, the Got Data? External Data Initiative, and the Fly Safe outreach campaign on Loss of Control.
The United States has the largest and most diverse GA community in the world, with more than 220,000 aircraft, including amateur-built aircraft, rotorcraft, balloons, and highly sophisticated turbojets. By working together, government and industry are making a difference to put the right technologies, regulations, and education initiatives in place to improve safety. The FAA’s goal is to reduce the GA fatal accident rate by 10 percent over a 10-year period from 2009-2018. Inflight Loss of control – mainly stalls – accounts for the largest number of GA fatal accidents. Although the fatal accident rate is beginning to decline, too many lives are still being lost. Last year, 384 people died in 238 general aviation accidents
The FAA and the rest of the aviation community are focused on reducing general aviation accidents by using a primarily non-regulatory, proactive, and data-driven strategy to get results, which is similar to the strategy the FAA uses in commercial aviation.
Reducing Risk
The FAA and industry are working together to use data to identify risk, pinpoint trends through root cause analysis, and develop safety strategies. The FAA and the GA community carry out this work through the GAJSC.
Formed in the mid-1990s, the GAJSC recently has renewed its efforts to combat GA fatal accidents. The government and industry group uses the same approach as the Commercial Aviation Safety Team (CAST). It uses a data-driven, consensus-based approach to analyze safety data to develop specific interventions that will mitigate the root causes of accidents. Recent accomplishments include more than 29 safety enhancements, (such as training, procedures, and technology) to address loss of control. Examples include a streamlined policy for angle of attack (AOA) system approvals and outreach to the GA community on loss of control topics... With power-plant system and component failures being the number two cause of fatal GA accidents, the GAJSC analyzed fatal GA accidents involving total or partial engine power loss. The GAJSC approved and initiated implementation of ten SEs, which focused on improving engine technology, aiding the pilot in decision making post-engine failure, and improving resources available to mechanics, as well as their education and training.
The GAJSC combines the expertise of many key decision makers across different parts of the FAA, several government agencies, and stakeholder groups. The other federal agencies are the National Aeronautics and Space Administration and the National Transportation Safety Board (NTSB), which participates as an observer. Industry participants include the Aircraft Owners and Pilots Association, Experimental Aircraft Association, General Aviation Manufacturers Association, Light Aircraft Manufacturers Association, National Business Aviation Association, National Air Transportation Association, National Association of Flight Instructors, Society of Aviation and Flight Educators, and the aviation insurance industry. The European Aviation Safety Agency (EASA) also participates as an observer.
Other achievements include several web-based resource guides, information on flying and medications, and overall GA community coordination on Loss of Control topics. Resources include targeted themes and articles in the FAA Safety Briefing magazine.
The GA community and the FAA are moving toward using de-identified GA operations data in the Aviation Safety Information Analysis and Sharing (ASIAS) program to help identify risks before they become accidents. In March of 2014 the FAA announced the start of a one-year project to illustrate the value, capabilities, and benefits of the ASIAS program for the GA community. The project explored potential new information sources such as General Aviation Flight Data Monitoring, voluntary safety reports, manufacturer reports, and information collected from avionics and using new common technologies such as iOS and Android personal electronic devices. This project has led to a broader expansion of GA in ASIAS. Tools are now available to the GA community to help explore and understand their own flight data and look for potential risks. Through this program, the FAA does not have access to any individual pilot’s data as the system is hosted by a third party. The de-identified aggregate data is used by the GA community through ASIAS to identify trends and look for system risks that may need to be mitigated. Data from these programs will be used for GA JSC initiatives and research conducted by the GA community. The GAJSC is working with the community to incorporate their data into ASIAS so that it may be used to identify risk.
New Technology
The NextGen program is comprised of innovative technologies and procedures to make flying safer, greener, and more efficient. In March 2015, the FAA achieved a major milestone by completing one of the largest automation changeovers in the history of the agency. We completed our new high altitude air traffic control system, known as En Route Automation Modernization (ERAM). This system will accommodate the technologies of NextGen, giving the U.S. a more powerful air traffic system.
The FAA is working with manufacturers to define equipage requirements and support NextGen by streamlining the certification and installation of NextGen technologies, such as Automatic Dependent Surveillance-Broadcast (ADS-B). It is a foundational element of NextGen and transforms aircraft surveillance using satellite-based positioning.
ADS-B enhances GA pilots’ awareness of other traffic and improves safety in areas that radar cannot reach, such as Alaska and the Gulf of Mexico. Pilots flying properly-equipped aircraft can see graphical weather information on cockpit displays, where they are in relation to nearby aircraft, and flight information such as temporary flight restrictions.
The full benefits of ADS-B can only be realized if all of the planes that fly in controlled airspace are equipped. The FAA has set January 1, 2020, as the deadline to equip for ADS-B Out in controlled airspace. On June 6, DOT and the FAA announced a $500 rebate incentive for GA aircraft owners who equip their aircraft with required avionics technology. Accelerating compliance is critical to ensuring that pilots, manufacturers, and retail facilities have adequate time and capacity to equip aircraft in a timely and efficient manner, ahead of a 2020 regulatory deadline. The rebates will be available this fall. In the meantime, the FAA has published information about the goals and structure of the program, and encourages aircraft owners to look at the available equipment on the market and to schedule an installation appointment with a qualified installer starting in the fall of 2016. Aircraft owners will only qualify for the rebate if the installation is scheduled after the FAA begins offering the rebates.
Airman Testing Standards and Training
In collaboration with a diverse group of aviation training community experts, the FAA has updated key elements of the airman certification system to include an enhanced focus on risk management. In June, the FAA replaced the Practical Test Standards (PTS) for the Private Pilot certificate in the airplane category and the Instrument Rating (also in the airplane category) with the corresponding Airman Certification Standards (ACS).
The ACS improves the PTS by adding task-specific knowledge and risk management elements to each PTS Area of Operation and Task. By integrating knowledge and risk management requirements with skill tasks, the ACS offers a comprehensive presentation of the standards for what an applicant needs to know, consider, and do in order to pass both the knowledge and practical tests for a certificate or rating. This format helps applicants, instructors, evaluators, and other stakeholders understand what the FAA expects in each phase of the certification process, from the FAA knowledge exam to the practical test. It also helps everyone understand how knowledge, risk management, and skill work together for safe operation in the NAS.
Aeronautical Data
In April, the FAA launched the Got Data? External Data Access Initiativeto give the private sector better access the FAA’s aeronautical data and spur innovation. The goal is to help industry be in a position to create innovative products and technologies that improve safety and efficiency. The initiative includes data such as airports, navigation aids, fixes, obstacles, holding, approaches, and Temporary Flight Restriction information. Based on stakeholder feedback, the FAA is delivering new features such as the Data Innovation Center, geofenced aeronautical chart product data in consumable formats, and automated digital product downloads. The FAA has also expanded the digital Terminal Procedures Publication, Coded Instrument Flight Procedures, the 8620-2 for all fixes, and added new symbology to charts.
Aircraft Design
On March 9, the FAA issued a proposal to overhaul the airworthiness standards for small general aviation aircraft. The FAA’s proposal, which is based on industry recommendations, would reduce the time it takes to get safety enhancing technologies for small airplanes into the marketplace and reduce the cost. The Notice of Proposed Rulemaking restructures the existing certification standards and replaces the current prescriptive design requirements in Part 23 with performance-based standards that maintain the same level of safety. It would add new certification standards to address general aviation loss of control accidents and in-flight icing conditions. The proposal establishes performance- and risk-based divisions for airplanes with a maximum seating capacity of 19 passengers or less and a maximum takeoff weight of 19,000 pounds or less. It would streamline how the FAA approves new technologies for small piston-powered airplanes all the way to complex high-performance executive jets.
The agency’s effort addresses recommendations presented in 2013 by a 55-member rulemaking committee that included representatives from the FAA, European Aviation Safety Agency, National Civil Aviation Agency of Brazil, Civil Aviation Administration of China, Transport Canada, Civil Aviation Authority of New Zealand, several airplane and avionics manufacturers, and industry groups.
Streamlining Certification
NORSEE
On March 31, the FAA published a new policy to help aircraft owners voluntarily install safety equipment on airplanes and helicopters that is not required by the agency’s regulations. It will reduce costs and streamline the installation of Non-Required Safety Enhancing Equipment (NORSEE) into the general aviation fleet. The policy is the result of collaboration under the GAJSC and expands the 2014 FAA policy, which simplified the design approval requirements for a cockpit instrument called an angle of attack (AOA) indicator. AOA devices can be added to small planes to supplement airspeed indicators and stall warning systems, alerting pilots of a low airspeed condition before an aerodynamic stall occurs. Such stalls are particularly dangerous during takeoff and landing.
NORSEE includes avionics, electronic instruments, displays and mechanical equipment. Equipment approved as NORSEE increases overall situational awareness; provides additional information other than the aircraft primary system; provides independent warning, cautionary, or advisory indications; and provides additional occupant safety protection. Examples of NORSEE equipment include: traffic advisory systems, terrain awareness and warning systems; attitude indicators; fire extinguishing systems; and autopilot or stability augmentation systems.
The policy has the flexibility to accommodate the installation of new technology safety enhancements into Part 23, 27, and 29 aircraft that are determined to be a minor change to type design. The benefits must outweigh the risk. The policy will reduce equipment costs by allowing the applicants the flexibility to select various industry standards that suit their product, as long as it meets the FAA’s minimum design requirements. NORSEE approval under the policy is not an approval for installation on the aircraft – it just makes the equipment eligible for installation on the aircraft.
Angle of Attack Indicators
On February 5, 2014, the FAA took an important step to help improve safety in small aircraft by simplifying design and production approval requirements for an AOA indicator. AOA indicators provide the pilot with a visual aid to prevent loss of control of the aircraft in the critical phases of flight. Previously, cost and complexity of indicators limited their use to the military and commercial aircraft. Under new FAA guidelines, AOA devices can be added to small airplanes to supplement airspeed indicators and stall warning systems, giving pilots an additional tool to avoid a dangerous aerodynamic stall and subsequent loss of control.
The FAA continues to work to improve RVSM Letter of Authorization (LOA) process
Since January 2005, Reduced Vertical Separation Minimum (RVSM) has allowed pilots to fly domestically with 1,000 feet of vertical separation rather than the previous 2,000 feet at cruising altitudes. On January 27, 2014, the FAA issued a policy that streamlined the process for granting approval to use RVSM. The FAA now considers previous operator and aircraft experience to determine the extent of the evaluation, reducing the amount of time it takes for operators to receive an authorization.
On July 20, 2016, the FAA published a revision to the RVSM rule removing the application requirements for an operator to submit an approved RVSM maintenance program solely for the purpose of RVSM authorization. Because of other, independent FAA airworthiness regulations, all aircraft operators continue to be required to maintain RVSM equipment in an airworthy condition. The rule change becomes effective on August 19, 2016.
Engagement & Outreach
Fly Safe
On June 6, 2015, the FAA and GA groups launched the Fly Safenational safety campaign to educate the GA community on how to prevent Loss of Control (LOC) accidents. An LOC accident involves an unintended departure of an aircraft from controlled flight. LOC can happen because the aircraft enters a flight regime that is outside its normal flight envelope and may quickly develop into a stall or spin. It can introduce an element of surprise for the pilot. LOC happens in all phases of flight. It can happen anywhere and at any time. There is one fatal accident involving LOC every four days. Join the campaign at #FlySafe and follow it on Facebook, Twitter, and Instagram.
Weather
Most weather-related accidents are fatal and a failure to recognize deteriorating weather continues to be a frequent cause or contributing factor in accidents. The GAJSC has produced several safety enhancements related to weather as part of their work on Loss of Control in flight. The 2014 FAA and industry’s Got Weather? national safety outreach campaign reached approximately 4.5 million people.
Helicopter Safety
The FAA partners with the International Helicopter Safety Team (IHST) and the U.S. Helicopter Safety Team (UHST) to promote safety and reduce civil helicopter accidents and fatalities worldwide. The organization was formed in 2005 to lead a government and industry cooperative effort to address factors that were contributing to an unacceptable helicopter accident rate. Prior to 2006, the number of worldwide civil helicopter accidents was rising at a rate of 2.5 percent per year. Since 2006, the worldwide civil helicopter fleet has grown by 30 percent, but the number of accidents has decreased in key global regions by 30 to 50 percent.
IHST members establish partnerships with countries with significant helicopter operations and encourage overseas industries to perform accident analysis and develop safety interventions. Partners include government and industry participants from the United States, Canada, Brazil, Mexico, New Zealand, India, Russia, and multiple countries in Europe, Central Asia, and the Middle East.
Since 2013, the UHST has focused on the U.S. commercial helicopter community. In 2014, the U.S. civil helicopter industry experienced a 26 percent accident rate reduction compared to 2013 and a 54 percent accident rate reduction compared to the 2001-2005 baseline accident rate. In 2015, the accident rate per 100,000 helicopter flight hours was 3.67, a 54 percent decrease compared to the 7.97 accident rate from the 2001-2005 baseline set by the UHST. In addition, fatal accidents are down 41 percent and the fatal accident rate is down 61 percent compared to a decade ago.
Total U.S. Accidents
2001-05 Baseline: 184 accidents, 29 fatal accidents, 55 fatalities
2013: 146 accidents, 30 fatal accidents, 62 fatalities
2014: 138 accidents, 21 fatal accidents, 37 fatalities
2015: 123 accidents, 17 fatal accidents, 28 fatalities
(33% decrease in accidents)
U.S. Accident Rate (per 100,000 flight hours)
2001-05 Baseline: 7.97 accident rate, 1.31 fatal accident rate, 2.45 fatality rate
2013: 4.95 accident rate, 1.02 fatal accident rate, 2.10 fatality rate
2014: 4.26 accident rate, 0.65 fatal accident rate, 1.14 fatality rate
2015: 3.67 accident rate, 0.51 fatal accident rate, 0.84 fatality rate
(54% decrease in accident rate)
Online Resources
The FAASTeam’s website is a good resource for pilots to help improve their skills and knowledge. The site hosts the FAA WINGS pilot proficiency program. It also contains online pilot training materials and includes courses to help a pilot avoid the pitfalls of VFR flight into Instrument Meteorological Conditions (IMC). Pilots, flight instructors, and mechanics are encouraged to register online.
Amateur-Built Aircraft
Amateur-built and other experimental aircraft were involved in more than 25 percent of U.S. fatal general aviation accidents over the past five years and account for an estimated five percent of total general aviation fleet hours. With the help of outreach, updated safety materials developed by the FAA and GAJSC industry participants, and new policies, this segment of the GA industry is showing improvement. Loss of Control remains the leading cause of fatal accidents involving amateur-built aircraft. The FAA’s Airmen Transition to Unfamiliar Airplanes Advisory Circular (AC 90-109A) helps plan the transition to any unfamiliar fixed-wing airplanes, including type-certificated (TC) and/or experimental airplanes. It provides information and guidance to owners and pilots of experimental, simple, complex, high-performance, and/or unfamiliar airplanes. It also provides information to flight instructors who teach in these airplanes.
The FAA also continues to promote AC 90-116, Additional Pilot Program (APP) for Phase I Flight Test. The AC provides information and guidance for flight testing experimental aircraft. The APP was developed to improve safety by enhancing Builder/Owner Pilot (BP) skills and mitigate risks associated with Phase I flight testing of aircraft built from commercially produced kits through the use of a qualified additional pilot and powerplant testing. The APP is an optional program which provides another pathway to conducting Phase I flight testing. The traditional option for a pilot to test their aircraft solo during Phase I is not covered or affected by this AC, and remains an option for those who choose to do so in accordance with their aircraft’s operating limitations.
Certificated Flight Instructors
The FAA has been working with the flight instructor community to improve GA safety through improved flight instructor training, most notably recurrent training.
Aviation Universities and Experts
Working through the Aviation Accreditation Board International (AABI) and the University Aviation Association (UAA), the FAA is partnering with the aviation academic community to leverage their expertise and develop best practices for improving flight training.
Background
The General Aviation Accident Rate
Although the number of fatal general aviation accidents over the last decade has decreased, so have the estimated total GA flight hours. This is likely due to economic factors.
From 2004 to 2009, fatal accidents from Controlled Flight Into Terrain (CFIT) have been reduced by approximately 50 percent.
However, until the 2015 estimate, the general aviation fatal accident rate appears to have remained relatively static based on the FAA’s flight hours estimates. The preliminary estimate for FY 2015 is a fatal accident rate of 1.03 with 238 GA fatal accidents with 384 fatalities. In 2014, the fatal accident rate was 1.09 fatal accidents per 100,000 hours, with 252 fatal accidents. In 2013, the fatal accident rate was 1.11 fatal accidents per 100,000 hours, with 259 GA fatal accidents. In 2012, the fatal accident rate was 1.09 fatal accidents per 100,000 hours flown, with 267 GA fatal accidents. In 2011, the fatal accident rate was 1.12 fatal accidents per 100,000 hours flown, with 278 GA fatal accidents. In 2010, the fatal accident rate was 1.10 fatal accidents per 100,000 hours flown, with 272 GA fatal accidents.
Previous five-year GA fatal accident rates and numbers:
|
GA Fatal Accidents per 100,000 Hours |
GA Fatal Accidents |
GA Fatalities |
FY10 |
1.10 |
272 |
471 |
FY11 |
1.12 |
278 |
469 |
FY12 |
1.09 |
267 |
442 |
FY13 |
1.11 |
259 |
449 |
FY14 |
1.09 |
252 |
435 |
FY15 (est) |
1.03 |
238 |
384 |
The Top 10 Leading Causes of Fatal General Aviation Accidents 2001-2013:
- Loss of Control Inflight
- Controlled Flight Into Terrain
- System Component Failure – Powerplant
- Low Altitude Operations
- Other
- System Component Failure – Non-Powerplant
- Fuel Related
- Unknown or Undetermined
- Windshear or Thunderstorm
- Midair Collisions
Comments
There are no comments yet for this item
Join the discussion